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S1 Supplemental Data

S1.1 Supplemental Figures
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Figure S1, related to Figure 1. Application of the constrained deconvolution
algorithm with available ground truth spiking data from the publicly available dataset
(GENIE project, Janelia Farm Campus, HHMI; Karel Svoboda (contact), 2015), and illustration of the parameter
identification process (N = 37 cells). A: Raw fluorescence data and reconstructed traces with constrained deconvolution
(blue) and the MCMC (red) methods. B: Reconstructed spike train with MCMC (blue stem plot) and true spikes (purple
dots). C: Noise level estimation. The noise level (green) is estimated from the PSD of the raw fluorescence (blue) at
high frequencies. The PSD of the reconstructed trace with added white noise of the estimated level (red) matches
the PSD of the raw trace. D: Estimation of the spike evoked transient response function with an AR(2) framework.
Blue: estimated transient from the sample autocorrelation function (eq. (3) in the main paper). Adaptation of the time
constants with the Metropolis-Hastings algorithm within MCMC (red trace). Optimal AR(2) estimate using the ground
truth data and systems identification methods (yellow). Normalized spike triggered average (STA) response using the
ground truth data (magenta). The sampling methods can approximate the optimal response function as is estimated
from the ground truth data. F: Zoomed version of raw and reconstructed data and superimposed spikes. Re-estimation
of the time constants improves the modeling of the fluorescence dynamics. E: Correlation scatter plot matrix at 33msec
resolution (2× timebin width) for three different methods: AR(2)-MCMC performs better than AR(2)-CD. Both
methods outperform all AR(1) methods (here shown AR(1)-MCMC), establishing that modeling the rise time can
significantly improve the quality of deconvolution. Comparisons were done with the Wilcoxon signed-rank test at the
0.05 level.
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Figure S2, related to Figure 5. Inferred neuronal shapes Ak and DF/F temporal activity using the PCA/ICA algorithm (a
subsample from a total of 19013 components detected in whole zebrafish brain). These samples were selected according
to the ranking procedure described in the text.

S1.2 Captions for supplementary movies

Movie S1 (related to Figure 4): Application to GCaMP6s-expressing neurons in cortical layer 2/3 of adult mouse
V1. Top row: Left: Raw data, Middle: Denoised data with synchronized background activity, Right: Residual signal
at 2× finer scale (the synchronized background activity is not included in the residual). Bottom left: Background
synchronized activity. For the rest of the panels, 4 representative extracted spatiotemporal components (top) and the
corresponding patches of the raw data. The contour plots indicate the locations of the representative components in the
field of view. The algorithm successfully denoises the signal and demixes the overlapping neurons.

Movie S2 (related to Figure 6): Video of patch A in Fig. 6, with calcium signals from whole zebrafish recording,
obtained with CNMF. Video contains: Raw data, background (b from Algorithm S3), denoised video containing only
inferred neuronal activity, and the residual (data with Background and inferred neurons removed). Also, we zoom in
on components ranked 1st,10th,20th,30th,40th and 50th in each patch (from left to right). For each neuron we show
the inferred shape, the centralized data (with background b removed), and the raw data. For the first two, a smaller
(occasionally saturated) color scale was used to emphasize very faint (and sometimes briefly firing) neurons, which are
also detected by the algorithm.

Movie S3 (related to Figure 6): Video of patch C in Fig. 6, with calcium signals from whole zebrafish recording,
obtained with CNMF. Panels similar as in Movie S2.

Movie S4 (related to Figure 6): Video of patch E in Fig. 6, with calcium signals from whole zebrafish recording,
obtained with CNMF. Panels similar as in Movie S2.
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Movie S5 (related to Figure 6): Video of patch B in Fig. 6, with calcium signals from whole zebrafish recording,
obtained with PCA/ICA (Mukamel et al., 2009). Panels similar as in Movie S2.

Movie S6 (related to Figure 6): Video of patch D in Fig. 6, with calcium signals from whole zebrafish recording,
obtained with PCA/ICA (Mukamel et al., 2009). Panels similar as in Movie S2. Note only 40 neurons were detected in
this patch, so there is no 50th neuron.

Movie S7 (related to Figure 6): Video of patch B in Fig. 6, with calcium signals from whole zebrafish recording,
obtained with PCA/ICA (Mukamel et al., 2009). Panels similar as in Movie S2.

Movie S8 (related to Figure 5): Centers of extracted neurons in the zebrafish brain obtained through CNMF. The
distribution of visible neurons in the zebrafish whole-brain fluorescence corresponds well with the distribution of the
components inferred using constrained NMF (cyan dots). Each frame in the movie is a 2D horizontal slice going
upwards in the (dorsal) z direction, with 8 µm spacing. Each pixel in each frame is the 95% percentile of the absolute
fluorescence across time.

Movie S9 (related to Figure 7): Application to calcium signals from apical dendrites of cortical Layer 5 pyramidal
neurons. Top row: Left: Raw data, Middle: Denoised data with the background and noisy components removed. Right:
Residual signal at 2× finer scale. Bottom panels: 11 of the spatiotemporal extracted components plus the background
synchronized activity (lower right panel). The video contains only the frames where at least one of the displayed
components is significantly active. The algorithm extracts rich and structured spatiotemporal components that are not
visible by plain observation of the raw data.

S2 Supplemental Experimental Procedures

S2.1 Experimental data

Motor spinal neuron data (Fig. 1) Spinal motor neurons expressing the calcium indicator GCaMP6s were imaged
in an isolated C57BL/6 mouse spinal cord preparation (aged 4 days postnatal). Ventral roots were stimulated to
antidromically evoke patterns of neuronal firing that matched timing of the stimulus pulses (Machado et al., 2015).
GCaMP6s expression was achieved following direct spinal cord injections of RV strain SAD-B19 expressing GCaMP6s
(Addgene 40753). This vector was constructed and packaged using standard rescue techniques (Osakada et al., 2011).
Two-photon imaging (940 nm excitation wavelength, 525/50 emission filter) was conducted at 14.6 Hz using a 20x
objective (1.0 N.A; Olympus).

Mouse V1 data (Fig. 4): In vivo calcium imaging data collected from GCaMP6s-expressing neurons in layer 2/3 of
the primary visual cortex of an adult mouse. The field of view of the movie was 270µm×270µm and the recording
frame rate was 10 fps, and the neurons were imaged through an open skull with a glass cranial window. Expression was
achieved via viral injection of AAV1-hsyn-GCaMP6s, four weeks prior to imaging, which was carried out on a home
built two-photon laser scanning microscope (see the companion paper, Yang et al. 2015) using a 25X NA 1.05 objective.

Zebrafish light-sheet imaging data (Figs. 5-6): Data obtained as described in Freeman et al. (2014).
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Dendritic imaging data (Fig. 7): Calcium signals from apical dendrites of cortical Layer 5 pyramidal neurons were
obtained by injecting AAV2/9-hSyn-FLEX-GCaMP6f (UPENN vector core) into the barrel cortex of Rbp4:Cre BAC
transgenic mice (GENSAT). Two-photon imaging was performed at 4Hz with a 16x, 0.8NA lens (Nikon) at 940nm
while mice performed a whisker-based object detection task (Lacefield and Bruno, 2013, SfN abstract). Resulting TIF
stacks were motion corrected with a dynamic programming algorithm implemented in Kaifosh et al. (2014).

S2.2 Algorithmic details

S2.2.1 Parameter estimation and AR modeling

Remember the autoregressive model for the calcium dynamics and the observation noise model

c(t) =
p

∑
k=1

γkc(t− k)+ s(t)

y(t) = α(c(t)+b)+ ε(t), ε(t)∼N (0,σ2).

(S1)

Under the assumption of a homogeneous Poisson spiking process with E[s(t)] = λ , and that the AR process is stationary
(it is necessary that γ1 + . . .+ γp < 1), we have

µ , E[c(t)] =
λ

1−∑
p
k=1 γk

. (S2)

For the auto covariance function Cc we have
Cc(τ) = E[c(t + τ)c(t)]−µ

2

= E[

(
p

∑
k=1

γkc(t + τ− k)+ s(t + τ)

)
c(t)]−µ

2

=
p

∑
k=1

γkE[c(t + τ− k)c(t)]+λ µ−µ
2

=
p

∑
k=1

γk
(
Cc(τ− k)+µ

2)+(1−
p

∑
k=1

γk

)
µ

2−µ
2

=
p

∑
k=1

γkCc(τ− k).

(S3)

Since the noise is white we have
Cy(τ) = α

2Cc(τ)+σ
2
δ (τ), (S4)

and combining (S3) with (S4) we derive

Cy(τ) =

{
∑

p
k=1 γkCy(τ− j)−σ2γτ , 1≤ τ ≤ p

∑
p
k=1 γkCy(τ− j), τ > p.

(S5)

The AR coefficients and noise variance can be estimated from the above equations using the sample auto-covariance.
Although this method works well for estimating the noise variance in model data, in practice a more robust way to
estimate σ2 is independently by using the power spectral density (PSD) of yyy. This method is somewhat less dependent
on parametric model assumptions about the data. Due to the slow decay dynamics of the calcium indicator, the AR
process acts typically as a low pass filter on the incoming spikes, and therefore the noiseless calcium trace has very
low power in the high frequency range. Since the noise is assumed to be white, its PSD is flat among all frequencies.
To estimate σ2 we compute the PSD of yyy and then average its value at the range of high frequencies (e.g. in the
range [Fs/4,Fs/2]), where Fs is the imaging rate. This point is illustrated in more detail in Fig. S1C. A trace from
the GCaMP6f dataset presented above is used to illustrate the parameter identification process. The noise level was
estimated by averaging the PSD of the raw trace (computed using Welch’s method) over a range of high frequencies
[Fs/4,Fs/2] (Fig. S1C). The order of the AR process p is typically low (p=1,2), and is determined by the imaging rate.
Alternatively, given a noise level, p can be determined as the minimum order such that the deconvolution problem
accepts a feasible solution.
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S2.2.2 Algorithms for solving the one-dimensional constrained deconvolution problem

We briefly discuss the four different approaches that can be used for the constrained deconvolution problem, which we
repeat here for completeness:

minimize
ccc

111T
T G(ccc− cccin),

subject to: G(ccc− cccin)≥ 0, c1 ≥ 0

‖yyy− ccc−b111T‖ ≤ σ
√

T .

(P-CD)

Here cccin models the initial calcium concentration, a parameter that was omitted in the main text for simplicity. The
initial concentration at time t = 1, is modeled as c1, and cccin is defined as the vector cccin = c1[1,γ, . . . ,γT ]> that models
the effect of the initial concentration at the observed time points. The time constant γ models the decay rate of calcium
transients initiated before the start of the experiment, as we choose it to be equal to longest decay time constant
of the calcium indicator. Using the AR framework, γ is equal to the largest root of the characteristic polynomial
λ p− γ1λ p−1− . . .− γp = 0.

For simplicity of the presentation, we assume that the baseline b and initial concentration c1 are known, although all
methods can be trivially modified to include estimation of these parameters. MATLAB implementations for all methods
can be found in https://github.com/epnev/constrained-foopsi.

Dual ascent methods: We introduce Lagrange multipliers for the constraints and define as cccλ as the solution to the
following program

minimize
ccc

L (ccc,λ ) = 111T G(ccc− cccin)+λ (‖yyy− ccc−b111T‖2−σ
2T ),

subject to: G(ccc− cccin)≥ 0.
(S6)

The problem (S6) can be readily solved in O(T ) time with the interior point method of Vogelstein et al. (2010). After
solving (S6), the Lagrange multiplier can be updated as

λk = λk−1−ak∇λ L (cccλk−1 ,λ ) = λk−1−ak(‖yyy− ccc−b111T‖2−σ
2T ), (S7)

where ak is an appropriate step size, determined e.g. by line search.

Conic programming: The program can also be solved with standard interior point methods for conic programming
(Boyd and Vandenberghe, 2004). Due to the simplicity of the residual and non-negativity constraints the solution can be
efficiently computed in O(T ) time using standard computational methods, e.g. the CVX computational package (Grant
et al., 2008).

Nonnegative LARS: The problem can also be solved directly in the spike domain using a nonnegative LARS
algorithm (Efron et al., 2004). More specifically we consider the modified problem in the spike domain as follows

minimize
sss

1
2σ2 ‖yyy−G−1sss−b111T − cccin‖2 +λ111T sss,

subject to: sss≥ 0.
(S8)

Instead of putting a hard noise constraint as before the LARS algorithm computes the solution path of (S8) for all λ and
stops when the noise constraint is satisfied. This process is efficient since the solution is piecewise linear in λ . We start
from λ0 = ∞ where sss = 000T . As λ decreases, more spikes are added in the solution, reducing the l2-norm of the residual
signal. Given the solution at the (k−1)-th step, at the k-th step, the algorithm includes an additional spike (or removes
an existing one), and then optimizes over the spike heights. The path algorithm is stopped when the produced solution
satisfies the residual constraint with equality, with a total computational cost O(T N2 +N3), where N is the total number
of steps. Note that the total number of nonzero spikes is at most k at the k-th step, and therefore ≤ N upon termination.
Thus this method is particularly efficient and preferred when the spiking signal is expected to be highly sparse.

6

https://github.com/epnev/constrained-foopsi


Spectral projected gradient methods: This method relies on the observation that the curve that characterizes the
trade-off between the l2 norm of the residual (‖yyy− ccc−b111T‖), and the sum of the spiking signal (111>T sss), is convex, and
uses an interior point method to explore this curve until the desired noise constraint is satisfied. More information can
be found in van den Berg and Friedlander (2008). For our case, this method is highly efficient due to our ability to
perform fast matrix vector operations with the banded and Toeplitz matrix G, because of the autoregressive model for
the calcium dynamics.

S2.2.3 Continuous time interpretation of AR models

We discuss briefly the continuous time interpretation of our autoregressive framework to connect the AR coefficients
with some biophysical properties of the calcium indicators. The following discussion is fairly standard, and a more
thorough exposition can be found in any standard linear systems textbook (e.g. Oppenheim and Willsky, 1997). An
autoregressive model of order p can be written as a discrete time linear dynamical system as follows

c[n]
c[n−1]

...
c[n− p+1]


︸ ︷︷ ︸

cccddd [n]

=


γ1 γ2 . . . γp
1 0 . . . 0

. . . . . .
...

0 . . . 1 0


︸ ︷︷ ︸

Ad


c[n−1]
c[n−2]

...
c[n− p]


︸ ︷︷ ︸

cccddd [n−1]

+


s[n]
0
...
0


︸ ︷︷ ︸

sss[n]

. (S9)

This can be mapped to the following continuous time dynamical system

ċccccc(t) = Accccccc(t)+
1

h(∆)
sss(t), (S10)

with
Ad = exp(Ac∆),

s(t) =
1

h(∆) ∑
n

s[n]δ (t−n∆),
(S11)

where ∆ denotes the timebin width, δ (·) the Dirac delta function, and h(·) is the Green’s function of (S10). The
eigenvalues of Ad are given by the roots of the characteristic polynomial λ p− γ1λ p−1− . . .− γp = 0 and the process is
stable if all the eigenvalues are within the unit circle. We can apply this framework to model calcium transients with
finite rise-time of the form

h(t) =
{

e−t/τd − e−t/τr , t > 0
0, t ≤ 0

, (S12)

with an AR(2) process. The function h(t) is the solution of the continuous time differential equation[
c̈(t)
ċ(t)

]
︸ ︷︷ ︸

ċccccc(t)

=

[
−
(

1
τd
+ 1

τr

)
− 1

τdτr

1 0

]
︸ ︷︷ ︸

Ac

[
ċ(t)
c(t)

]
︸ ︷︷ ︸

cccccc(t)

+

[
δ (t)

0

]
. (S13)

If λ c
1 ,λ

c
2 are the eigenvalues of Ac, and λ d

1 = exp(λ c
1 ∆),λ d

2 = exp(λ c
2 ∆), then γ1 = λ d

1 +λ d
2 and γ2 = −λ d

1 λ d
2 . The

conditions τd ,τr > 0 imply that λ c
1 ,λ

c
2 < 0⇒ 0 < λ d

1 ,λ
d
2 < 1 which implies that 0 < γ1 + γ2 < 1 and −1 < γ2 < 0.

λ d
1 ,λ

d
2 are real numbers when γ2

1 +4γ2 > 0, which is the over-damping condition that prohibits oscillatory behavior in
the calcium transient response. With this relationship between γ1,γ2 and τd ,τr we have an exact mapping between the
continuous and discrete time representations in the sense that

cccccc(n∆) = cccddd [n]. (S14)

and we also have h(∆) =
√

γ2
1 +4γ2.
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S2.2.4 Updating the time constants

As discussed in the main text, it is useful to refine the time constants of the AR process for each neuron. To do this we
augmented the MCMC approach of Pnevmatikakis et al. (2013) to also include sampling of the time constants with a
Metropolis-Hastings algorithm (Gelman et al., 2003). This method can fine tune the time constants of the indicator
response, at a multiplicative computational cost, since the MCMC method by default draws a number of samples to
approximate the full posterior distribution of the spike times and other model parameters.

We briefly describe the process for an AR(2) model of the indicator dynamics. For given time constants τd ,τr in the
continuous domain, we sample new values from Gaussian distribution τnew

d ∼N (τd ,σ
2
d ), τnew

r ∼N (τr,σ
2
r ). We also

impose a minimum value of τmin for the rise time, and a maximum value τmax for the decay time and require that τr ≤ τd .
The proposed time constant values τnew

d ,τnew
r give rise to a new calcium trace cccnew, and are accepted with probability

P(accept τ
new
d ,τnew

r ) = min

(
1,

exp
(
−‖yyy− cccnew−b‖2/2σ2

)
exp(−‖yyy− ccc−b‖2/2σ2)

)
.

An algorithmic description of this procedure is depicted in Alg. S1. In the simpler AR(1) case, then τr = 0, and we only
need to sample τd . The method is also easily extendable to higher order models.

Algorithm S1 Neural activity deconvolution with time constant updating

Require: Data y ∈ RT , number of samples Nsamples for MCMC, timebin width ∆, lower and upper bound of time
constants τmin,τmax, variance of proposal kernel σ2

r ,σ
2
d .

Estimate γ1,γ2 from (S5), and σ2 through PSD.
Convert γ1,γ2 in continuous time τr,τd
for i = 1:Nsamples do

Draw new samples for sss,ccc,c1,b,σ2 using the MCMC algorithm of Pnevmatikakis et al. (2013).
Update time constants using UPDATETIMECONSTANTS(yyy,ccc,sss,b,c1,τr,τd ,σ

2,σ2
r ,σ

2
d ,τmin,τmax)

end for
return all samples
procedure UPDATETIMECONSTANTS(yyy,ccc,sss,b,c1,τr,τd ,σ

2,σ2
r ,σ

2
d ,τmin,τmax)

Draw new time constants[
τnew

r
τnew

d

]
∼N

([
τr
τd

]
,

[
σ2

r 0
0 σ2

d

])
, with τmin ≤ τ

new
r ≤ τ

new
d ≤ τmax.

Construct proposed calcium trace cccnew.
Draw r ∼U([0,1])

if r < min

(
1,

exp
(
−‖yyy− cccnew−b‖2/2σ2

)
exp(−‖yyy− ccc−b‖2/2σ2)

)
then

τr← τnew
r , τd ← τnew

d
end if

return τr,τd
end procedure

S2.2.5 Merging of existing components

Depending on the initialization procedure, a neuron can sometimes be initially split into two or more different spatial
components that subsequently need to be merged. To detect such components, we construct a graph where each vertex
corresponds to a neuron and two neurons are connected with an edge if their spatial components overlap. For this graph
we detect all the maximal cliques, i.e., the cliques of the graph that are not part of larger cliques. (Fast approximate
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methods effective for large sparse graphs exist for this problem (Eppstein et al., 2010).) Now for each of these maximal
cliques we compute the correlation matrix of the temporal components of the corresponding nodes. We find the largest
principal submatrix where all the correlation coefficients are above a certain threshold, and merge the corresponding
spatial components.

S2.2.6 Description of the initialization procedures in somatic imaging

Algorithm S2 Greedy neuron identification

Require: Data Y ∈Rd×T ; number of neurons needed K; standard deviation of the 2-d Gaussian kernel used for filtering
τ = (τx,τy); window size w = (wx,wy).
procedure GREEDYNEURONID(Y , K, τ , w)

R = Y ;
Define Gaussian blur matrix D ∈Rd×d , where column i is a (vectorized) truncated 2-d Gaussian kernel centered

at pixel i with variance (τ2
x ,τ

2
y ), supported in a wx×wy window centered at i (1≤ i≤ d);

for i = 1 : d do
Subtract and store median value for each pixel, m(i) = Median(Y (i, :)).

end for
for k = 1 : K do

Calculate variance explained by each kernel, ρ = DT R, vi = ∑
T
t=1 ρ2

it ;
Identify the center of neuron k, ik = argmaxi vi
Define Sk to be the set of all pixels lie in the wx×wy window centered at ik; solve by alternating least

squares
minimize

aaak∈Rd ,ccck∈RT
‖R−aaakcccT

k ‖2

subject to: ak(i)≥ 0, i ∈ Sk

ak(i) = 0, i /∈ Sk.

(S15)

R(Sk)← R(Sk)−aaakcccT
k ;

end for
R← R+mmm111T

T . Add median values back to the residual and solve by alternating least squares
minimize
bbb∈Rd , fff∈RT

‖R−bbb fff T‖2

subject to b(i)≥ 0, i = 1, . . . ,d
f (t)≥ 0, t = 1, . . . ,T.

(S16)

return A = [aaa1, ...,aaaK ], C = [ccc1, ...,cccK ]
T , bbb, fff .

end procedure

Algorithmic description for the greedy initialization procedure: Algorithm S2 provides full details of the greedy
initialization procedure, which was described at a high level in the methods section. Several details are worth noting
here. To begin we center the data at each pixel around zero, by subtracting the median over time. Also, since the spatial
component Sk is localized, at each step only a small portion of the residual is updated and therefore only a small portion
of the explained variance needs updating. Also note that the nonnegative matrix factorization step (equation (S15) in
algorithm S2) can be efficiently done by alternating between optimizing aaak and ccck, since the Gaussian kernel scan gives
a reasonable initialization. Usually ∼5 iterations are enough for convergence. Since the solution of (S15) is identifiable
up to a multiplicative scalar, we constrain the spatial components to have unit norm.
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Algorithmic description for the Group Lasso initialization: In order to solve the convex optimization problem of
eq. (8), we use the FISTA algorithm (Algorithm S3, derived from Eq. 4.1-4.3 on Beck and Teboulle (2009)), where
R = Y − bbb111>T is the residual from the data after we subtract the background component. As explained in Beck and
Teboulle (2009) a key parameter of the algorithm is the "Lipschitz constant," which in the setting considered here is
twice the maximal eigenvalue of D>D. In our case, we use a filter matrix D whose sum is normalized to 1, and whose
Fourier spectrum is strictly decreasing as a function of the magnitude of the frequency, so the maximal eigenvalue is 1.
Therefore the Lipschitz constant is L = 2.

Next, we list a few implementation details. (1) It usually takes 30-100 iterations of the algorithm to converge. (2) All
Gaussian dictionary elements have equal standard deviation τ and window size w = 4τ , chosen to match the typical size
of neurons in the image. (3) Convolution with the Gaussian Kernel is implemented efficiently using the Fast Fourier
Transform. This is especially fast if graphical processing units (GPUs) are used. (4) The regularization constant λ can
be automatically adjusted by requiring that the portion of significant locations (i.e. i in which ∑t F2

it ≥ 0) in the image is
equal to the estimated neuronal density in the image area in Algorithm S3). This can be done efficiently using using
exponential search (which is an efficient generalization of binary search for unbounded lists). (5) If the neuronal shape
detected by the matrix factorization approach has a center which is far (e.g, 2τ) from the original shape detected by the
group lasso initialization, then we discard that shape.

Algorithm S3 FISTA for Group Lasso

Require: Residual R ∈ Rd×T ; Initial points standard deviation of the 2-D Gaussian kernel τ = (τx,τy); Regularization
constant λ ;

1: procedure GROUPLASSOFISTA(R, τ , α ,λ )
2: Define Gaussian blur matrix D ∈ Rd×d , where column p is a (vectorized) truncated 2-D Gaussian kernel

centered at p with variance (τ2
x ,τ

2
y ), and the operator(
Tµ (a)

)
qt , max

aqt

1− µ√
∑t a2

qt

 ,0

 .

3: Initialize µ = λ/L, L = 2, F(0) = 0d×T , ,W(1) = F(0), t(1) = 1, M = 2
L D>D, v = 2

L D>R.
4: Repeat until convergence for k ≥ 1:
5: FISTA equations:

F(k) = Tµ

[
W(k)−MW(k)+ v

]
t(k+1) =

(
1+
√

1+4t2
(k)

)
/2

W(k+1) = F(k)+

(
t(k)−1
t(k+1)

)(
F(k)−F(k−1)

)
return F,bbb.

6: end procedure

S2.2.7 Handling missing data

Our method can easily handle the case of missing data that can arise in practice, e.g., due to brain movement during
line scanning (Dombeck et al., 2007). Our framework remains the same, with the only difference that entries where
observations are missing are omitted from the noise constraints, but are included in the constraints for the temporal
dynamics. To compute the autocovariance function or PSD (for estimating the AR parameters and noise level) for a
pixel with missing data, we interpolate the missing values using nearest neighbor interpolation
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Imaging rate AR order Initialization
method

Include noise
constraints

Somatic or
axonal imaging

f ≥ 15Hz p = 2 Greedy/GL Yes
5Hz≤ f ≤ 15Hz, slow indicator p = 1,2 Greedy/GL Yes
5Hz≤ f ≤ 15Hz, fast indicator p = 1,2 Greedy/GL Yes

f ≤ 5Hz p = 0
(no deconvolution)

Greedy/GL No

Dendritic Imaging f ≥ 10Hz
p = 0

(no deconvolution) Sparse NMF Yes

f ≤ 5Hz p = 0
(no deconvolution)

Sparse NMF No

Table S1, related to the Experimental Procedures. Recommended algorithm setting depending on imaged modality,
imaging rate and calcium indicator.

S2.2.8 Extraction of DF/F values

Our approach enables us to express the temporal trace of each component in the DF/F domain, independently of the
relative amplitude between the spatial and temporal components. To do so, we can assign a temporal background signal
to each component, by averaging the spatiotemporal background over the spatial component:

f0
j = (a>j (Y −AC))>,

and then express the DF/F values as c j/m(f0
j), where m(·) is an appropriate summary statistic (e.g., mean, median,

running average).

S2.2.9 Further algorithmic speedups

Further algorithmic speedups can be obtained during the initialization phase, by spatially downsampling the raw to
obtain faster initial estimates and using specific block coordinate descent strategies during the CNMF iterations. Such
approaches can lead to up to an order of magnitude speedups as highlighted in Friedrich et al. (2015) on zebrafish
light-sheet imaging data.

S2.3 Details of the data analysis

Our proposed method is modular and comes with multiple different variants that can be used during the initialization
and/or the alternating minimization process. Before we present the details for all the datasets and examples presented in
the main paper, Table S1, related to the Experimental Procedures presents some general guidelines on what variant to
use depending on the imaged modality, imaging rate and/or calcium indicator used.

S2.3.1 Details of the application to spinal cord data of Fig. 1

The constrained deconvolution problem (P-CD) was solved with conic programing using the CVX computational
package. For updating the time constants, the standard deviations for the proposal density were chosen as σd = 10msec,
σr = 2msec. Furthermore, the bounds were set as τmin = 0, τmax = 2000ms. For the MCMC algorithm, Nsamples = 500
samples were drawn as described in Pnevmatikakis et al. (2013).
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S2.3.2 Details of the simulated experiment of Fig. 2

The field of view was 50 × 50 pixels large. The two neurons had a 2-d spherical Gaussian shape with standard deviation
5 pixels and were centered on the same horizontal axis, 3 pixels apart, giving a high overlap between the two spatial
footprints (correlation value = 0.9). Spikes were simulated from a Bernoulli process with probability of spiking per
timebin 0.05. 2000 timebins were simulated, and the calcium was generated from a first order process with γ = 0.8,
corresponding to a decay time constant 4.48 times the width of the timebin. We used a simple clustering procedure to
initialize the estimates: after an iteration of the sparse constrained NMF, we clustered the extracted spiking signals
according to a simple max-assignment

snew
1 (t) =

{
sold

1 (t)+ sold
2 (t), sold

1 (t)> sold
2 (t)

0, otherwise ,

and similarly for snew
2 (t). These clustered temporal components were then used to warm-start the constrained NMF.

S2.3.3 Details of the simulated experiment of Fig. 3

The field of view was 50 × 50 pixels large. Simulations were performed with neurons that had two different shapes: (i)
spherical 2-d Gaussians with standard deviation 5 pixels and (ii) "donut" shaped centered at [x0,y0] with shape given by

α(x,y) = exp

(
− (
√
(x− x0)2 +(y− y0)2− r0)

2

2σ2
r

)
,

with r0 = 4,σr = 1. In each simulation 10 neurons were placed in the field with centers drawn from a spatial Poisson
process with intensity function at each pixel chosen form a uniform distribution. This setup allowed for arbitrary
spatial patterns and degree of overlap. Spikes were simulated from a Bernoulli process with probability of spiking per
timebin 0.05. 2000 timebins were simulated, and the calcium was generated from a first order process with γ = 0.9,
corresponding to a decay time constant 9.49 times the width of the timebin. White Gaussian noise was simulated to
corrupt the data. The standard deviation for each pixel was equal to ξ× the mean activity, and thirty different noise
levels were considered, ξ = 0.1,0.2, . . . ,3. For each combination of noise level and neuron shape 5 simulations were
performed. The plain NMF of Maruyama et al. (2014) searched for 10 neurons, with the temporal background fixed as
described in Maruyama et al. (2014). For our constrained NMF framework, we used the greedy method to initialize
the 10 components, and estimated the noise level and time constant from the data. To estimate the spiking signal for
the PCA/ICA and plain NMF methods, the estimated temporal components were deconvolved from the true indicator
dynamics (giving these methods a bit of a relative advantage). Fig. 3 reports the median spike correlation values among
all 5 trials and 10 estimated neurons.

S2.3.4 Details of the application to the large scale V1 data (Fig. 4)

The greedy initialization algorithm was used to initialize 300 spatio-temporal components with size of filtering kernel
4×4 and window 10×10. This number was chosen after visual inspection of the raw data. Then the CNMF framework
was applied and the constrained deconvolution algorithm was used for estimating the temporal components. Since the
imaging rate was relatively low (10Hz), an AR(1) process was used to model the temporal traces, and each component
had a separate time constant that was estimated from the CD algorithm. At the end of each iteration, the merging
procedure was applied with a merging threshold of 0.8. In total 31 components were merged. The remaining 269
components had time constants that are within a factor of two of the values reported in the literature for GCaMP6s
(Chen et al., 2013), with a median value of 1180ms. The temporal traces were then transformed into the DF/F domain,
and ordered according to the criterion explained in the Experimental Procedures.
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S2.3.5 Details of the application to the light-sheet imaging data (Figs. 5-6)

The data is segmented to 5600 patches, and the algorithm is then run in parallel on all patches. In order to determine the
value of the regularization parameter λ used for the group lasso initialization approach (8), we sample a few patches out
of the whole data set, and find a single value of λ which gives reasonable results for all these patches. We then use this
single value of λ to provide initial group lasso estimates for the whole brain. To prevent the detection of partial shape
components we ignore any shape detected near the edge of the patch, and use overlapping patches to compensate. To do
so, we remove any shape whose activity is highly correlated (above 0.95) to some other higher-ranked overlapping
shape component.

Since the spatial components are restricted to lie within their corresponding spatial patches (which are not large compared
to the size of the cell body), the inferred spatial components are localized (and therefore sparse) by construction. Thus
there is no need to impose a spatial sparsity constraint. Similarly, because of the low temporal resolution of these
recordings, the inferred neural activity vectors are not expected to be particularly sparse, and therefore we do not impose
sparsity in the temporal domain either. This leads to a somewhat simplified optimization problem:

minimize
A,C,bbb, fff

‖Y −bbb fff>−AC‖2

subject to Axk ≥ 0, ∀x ∈ Sk

Axk = 0, ∀x /∈ Sk

C,b, f≥ 0

(S17)

where Sk denotes the k-th fixed spatial patch. We solve this problem by block-coordinate descent; upon convergence,
we lightly smooth the inferred shape using median filtering. Because the resulting spatial components here were not
quite as sparse as in the other examples (because we did not sparsen A within the patches Sk), we found it useful when
ranking the obtained components to multiply the maximum value of the temporal components by the squared l4 norm
of the corresponding spatial footprints, to penalize overly broad and/or noisy spatial shapes.

S2.4 Application of constrained calcium deconvolution to datasets with available ground truth (Fig. S1)

We applied the constrained deconvolution algorithm to two publicly available datasets (GENIE project, Janelia Farm
Campus, HHMI; Karel Svoboda (contact), 2015) with available ground truth. Prior to deconvolution the data was high
pass filtered with a quantile filter that subtracted the 10th percentile value over a moving window with width 8.3sec
(500 timebins, imaging rate 60Hz) to remove slowly variable baseline due to background/neuropil activity. Due to
the high imaging rate, an AR(2) process was used to model both the rise and the decay of the calcium indicator spike
triggered response function. The results are shown in Fig. S1. The benefits that can be derived from this time constant
updating scheme are shown in Fig. S1D. The AR estimation method (eq. S5, blue trace) estimates τr = 8msec and
τd = 1277msec, a much faster rise and slower decay than trace recovered if we compute the spike triggered average
response (magenta trace), and does not the fit data well (Fig. S1F). These estimates are corrected by the MCMC
(red) approach, τr = 32msec, τd = 645msec, respectively. These traces match better the STA response. For reference
applying the (supervised) n4sid systems identification method (Verhaegen and Verdult, 2007) to estimate a second
order model gives τr = 62msec, τd = 518msec (yellow).
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